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Abstract
• The multi-group discrete-ordinate equations of 

radiation transfer is solved for the first time by 
Newton’s method.

• It is a photon free method because the photon 
variables are elminated from the radiation equations 
to yield a NgroupXNdirection smaller but equivalent
system of equations. 

• The smaller set of equations can be solved more 
efficiently than the original set of equations.

• Newton’s method is more stable than the Semi-
implicit Linear method currently used by 
conventional radiation codes
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The Backward Euler, Multi-group, Discrete-
ordinate equations to be solved are

( ) qTBTw
t
TTTC

tc
sTBTTDI

tc

dg
gdggd

n

p

n
dg

dgggdggd

+−=
∆
−

∆
++=






 ++

∆

∑
,

,

,
,,

)()()(

ˆ)()()(1

ψσ

ψ
σψσµ

• D is a finite difference matrix
• T is the temperature
• ψg,d is the intensity for group g and direction d
• Bg(T) is the blackbody function 
• Cp(T) and σg(T) is the heat capacity and cross section
• Our goal is solve this system, written as G(ψ,T)=0.
• # unknowns = size(ψ) + size(T) = (nx X nd X ng) + nx
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ψ is elminated from G(ψ,T)= 0 to give the 
smaller F(T)=0; this improves efficiency.

• # of unknowns = nx

qTB
tc

sTBTHTw
t
TTTCTF

dg
g

n
dg

dgggdggd

n

p −









−











∆
++−

∆
−

≡ ∑ −

,

,
,

1
, )(ˆ)()()()()(

ψ
σσ

• Solve the transport equation formally
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• Plug ψ into the temperature equation to get
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Conventional deterministic methods do not solve
G(ψ,T)=0, but solve a linear approximation.
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• The Semi-implicit Linear approximation 
– Lags           Cn

p= Cp(Tn) and σn
g=σg(Tn) ,  and then

– Linearizes,  Bg(T) = Bn
g + B’g(T-Tn), to give

• Eliminating (T-Tn) yields
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may be negative;
may yield negative
ψSiLand TSiL
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Test Problem
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ψb=Bg(1 keV)

• Cp = 5x1014 erg/cm3-keV  everywhere

• Nd = 4;   Ng = 50,  hνmin = 10-5 keV,  hνmax = 10 keV

nx=10 nx=50 nx=10
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Linear vs. Nonlinear 
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Linear results for increasing ∆t
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Nonlinear results for increasing ∆t
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30 group comparison with different time steps

• Time step
– Lin:    60 ps
– NL:   150 ps

• Run time
– Lin:  125 sec
– NL:   113 sec 
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Nonlinear is as fast as linear
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• Time step
– Lin:    60 ps
– NL:     60 ps

• Run time
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Nonlinear results for Su-Olson Problem

No scattering, Grey, Cp = 4 aradT3, σ = 1 cm-1, nd =20, nx =47, ∆t=334fs
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Linear results for Su-Olson Problem

No scattering, Grey, Cp = 4 aradT3, σ =1 cm-1, nd=20, nx=47, ∆t = .334fs
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Conclusion

• Newton’s method is more stable than 
linear method

• Nonlinear method can be faster than 
linear method because the nonlinear 
method can take larger time steps than 
the linear method

nunes18
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